CS Notes
  • CS-Notes文档说明
  • 机器学习
    • 频率派和贝叶斯学派
    • 机器学习中的分类指标
    • 数学基础
    • 数据清洗
    • SVM
    • 线性模型
    • 拉格朗日乘子法和KKT条件
    • 集成学习
    • 贝叶斯分类器
    • 降维和度量学习
    • 决策树
    • 神经网络
    • 神经网络优化器
    • Autoencoders & GANs
    • IoU
    • EM算法
    • ML问题总结
    • 机器学习&深度学习学习资料汇总
    • 如何阅读论文
    • 如何写好一篇论文
  • 语言、算法相关
    • 背包问题 - 01背包&完全背包
    • 平衡二叉树AVL
    • 红黑树RB-Tree
    • STL容器
    • STL 常用算法
    • Markdown总结
    • 问题总结
    • 代码汇总
    • PAT手册
  • MIT 6.828 OS课程
  • ImGui
Powered by GitBook
On this page
  • Boosting
  • 组合策略

Was this helpful?

  1. 机器学习

集成学习

Previous拉格朗日乘子法和KKT条件Next贝叶斯分类器

Last updated 5 years ago

Was this helpful?

集成分类的分类:

类别

分类器

例子

同质(homogeneous)

基学习器(base learner)

全由决策树构成

异质(heterogeneous)

组件学习器(component learner) 或个体学习器

由神经网络和决策树构成

集成学习首先要考虑的问题是,如何保证集成后的效果比没有集成的情况下要更好呢?因为有时候并不一定说把两个不好的集成在一起就好,两个好的东西集成在一起也一定好。

这里就涉及到集成时要判定的两个依据:一个是个体学习器要具备一定的准确率,另外一个是学习器之间具有多样性。

集成学习实现方法

类别特点

例子

个体学习器间存在强依赖关系,必须串行生成的序列化方法

Boosting

个体学习器间不存在强依赖关系,可同时生成的并行化方法

Bagging、随机森林

Boosting

Boosting算法的核心思想是:从初始训练集中训练得到一个基学习器,然后根据基学习器对于样本预测的结果,让判别错误的样本在后续的训练中得到更多的关注。然后再基于调整过的样本训练下一个基学习器。反复这个过程,直到训练好T个学习器,最终对这些学习器进行加权结合。

下面我们看Boosting中最著名的算法代表:AdaBoost

Boosting

Bagging

关注点

降低偏差

降低方差

适用场景

泛化能力弱的学习器

不剪枝的决策树、神经网络等易受样本扰动的学习器

组合策略